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Alphabets and Configurations

Alphabet: A finite set of letters A.

(dD) Configuration: A mapping c : Zd → A.

(dD) Full shift: The set of all configurations AZd
.
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Topology and Dynamics

Compact topology for the full shift.

Product of the discrete topology on A.

(ci )i∈N converges iff (ci (~x))i∈N is eventually constant for all
~x ∈ Zd .

f : AZd → X is continuous iff it depends on a finite number of
coordinates.

Shift action: σ~n(c)(~x) = c(~x + ~n), ∀c ∈ AZd
,∀~x ∈ Zd .

Shifts are homeomorphisms.
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Subshifts

Pattern: A partial assignment p : D → A, where D ⊆ Zd is
finite.

Subshift: A subset XF ⊆ AZd
defined by the set of forbidden

patterns F .

XF = {c ∈ AZd
: σ~n(c)|D 6= p}, for all ~n ∈ Zd and all

patterns p : D → A in F .

Subshifts are the closed and σ-invariant subsets of AZd
.

Subshift of Finite Type (SFT): A subshift defined by a
finite set of forbidden patterns.
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1D SFTs

Set of infinite paths on a directed graph XG .

Associated transition matrix AG .

Dynamical properties of XG correspond to spectral properties
of AG .

Periodic points, transitivity, mixing.

Perron-Frobenius Theory, principal eigenvalue, entropy.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



1D SFTs

Set of infinite paths on a directed graph XG .

Associated transition matrix AG .

Dynamical properties of XG correspond to spectral properties
of AG .

Periodic points, transitivity, mixing.

Perron-Frobenius Theory, principal eigenvalue, entropy.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



1D SFTs

Set of infinite paths on a directed graph XG .

Associated transition matrix AG .

Dynamical properties of XG correspond to spectral properties
of AG .

Periodic points, transitivity, mixing.

Perron-Frobenius Theory, principal eigenvalue, entropy.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



1D SFTs

Set of infinite paths on a directed graph XG .

Associated transition matrix AG .

Dynamical properties of XG correspond to spectral properties
of AG .

Periodic points, transitivity, mixing.

Perron-Frobenius Theory, principal eigenvalue, entropy.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



1D SFTs

Set of infinite paths on a directed graph XG .

Associated transition matrix AG .

Dynamical properties of XG correspond to spectral properties
of AG .

Periodic points, transitivity, mixing.

Perron-Frobenius Theory, principal eigenvalue, entropy.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



2D SFTs

Wang tiles, unit squares with coloured edges.

Finite number of tiles, but infinite copies of each tile.

Adjacent tiles must have the same color in abutting edges.

No (efficient) algebraic description.
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Aperiodic SFTs

Periodic configuration c :
∃ lineraly independent ~n1, . . . , ~nd ∈ Zd such that
c(~x + ~ni ) = c(~x), ∀~x ∈ Zd and i = 1, . . . , d .

Aperiodic SFT: Non-empty, but does not contain a periodic
configuration.

No aperiodic 1D SFT. Cycle in the graph.
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What happens in higher dimensions?

Theorem (Berger 1966, Robinson 1971, Kari-Culik 1995, Ollinger
2010, Jeandel-Rao 2015)

There exists an aperiodic 2D SFT.

Self-similarity.

Original construction had 20426 tiles.

Smallest (possible) has 11.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



What happens in higher dimensions?

Theorem (Berger 1966, Robinson 1971, Kari-Culik 1995, Ollinger
2010, Jeandel-Rao 2015)

There exists an aperiodic 2D SFT.

Self-similarity.

Original construction had 20426 tiles.

Smallest (possible) has 11.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



What happens in higher dimensions?

Theorem (Berger 1966, Robinson 1971, Kari-Culik 1995, Ollinger
2010, Jeandel-Rao 2015)

There exists an aperiodic 2D SFT.

Self-similarity.

Original construction had 20426 tiles.

Smallest (possible) has 11.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



What happens in higher dimensions?

Theorem (Berger 1966, Robinson 1971, Kari-Culik 1995, Ollinger
2010, Jeandel-Rao 2015)

There exists an aperiodic 2D SFT.

Self-similarity.

Original construction had 20426 tiles.

Smallest (possible) has 11.

Χαράλαμπος Ζηνοβιάδης University of Turku

1D and 2D symbolic dynamical systems



The Emptiness Problem

The Emptiness Problem

Given a dD finite set of forbidden patterns F , is XF 6= ∅?

Is there an algorithm for this problem?

Semi-algorithm for emptiness.

Semi-algorithm for existence of a periodic point.

If aperiodic SFTs do not exist, then (exactly) one of the
semi-algorithms will halt.

Emptiness is decidable for 1D SFTs.
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What happens in higher dimensions?

Theorem (Berger 1966, Robinson 1971, Kari 2008)

The Emptiness Problem is undecidable for d = 2.

Sierpinski carpet can be ”realized”.

Embedding of Turing Machine computations inside.
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Expansive and Non-Expansive Directions

X is a 2D subshift.

l ∈ R t {∞} is a slope.

` ⊂ R2 is the corresponding line through the origin.

`r ⊂ R2 is the corresponding stripe of width 2r .

Definition

l is expansive for X if there exists r > 0 such that every x ∈ X is
determined by x`r .

A 2D configuration encoded in a 1D strip.

N (X ) denotes the set of non-expansive directions of X .
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Extremely Expansive Subshifts

Theorem (Boyle-Lind 1997)

N (X ) 6= ∅ if and only if X is infinite.

X finite ⇒ N (X ) = ∅.
X infinite ⇒ N (X ) 6= ∅.
Extremely expansive: |N (X )| = 1.

Most restricted non-trivial case.

Being extremely expansive is a strong geometric restriction.

Reducing a 2D object to 1D as much as possible.

Are extremely expansive 2D SFTs closer to the 1D or to the
2D case?
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Aperiodicity and Undecidabilty for Extremely Expansive
SFTs

Theorem (Guillon-Z. 2016)

There exists an aperiodic extremely expansive 2D SFT.

Theorem (Guillon-Z. 2016)

The Emptiness Problem is undecidable for extremely expansive 2D
SFTs.

Extremely expansive remain essentially 2D.
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Structure of N (X )

Question

What can N (X ) ⊆ R t {∞} look like?

Theorem (Boyle-Lind 1997)

N (X ) is closed under the one-point compactification of R t {∞}.

Theorem (Hochman 2011)

For every closed set of directions N0, there exists a subshift X
such that N (X ) = N0.
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What happens in 2D SFTs?

Theorem

N (X ) is effectively closed under the one-point compactification
of R t {∞}.

There exists an algorithm that discards directions not in
N (X ).

Additional computational theoretic restriction.

As happens usually in 2D SFTs, necessary computational
restriction turns out to be also sufficient.

Theorem (Guillon-Z. 2016)

For every effectively closed set of directions N0, there exists a 2D
SFT X such that N (X ) = N0.
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Non-expansive direction of an extremely expansive 2D SFT

Theorem

l is the unique direction of expansiveness of an SFT iff it is a
recursive number.

There exists an algorithm that takes n and gives an
approximation of error ≤ 2−n.

Connection between computational and geometric notions.
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Thank you

Σας ευχαριστώ!
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