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Historical background

I Stokes in 1847, irrotational

I Nekrasov, Levi-Civita, Struik in 1920s, small amplitude

I Krasovskĭi in 1961, Keady, Norbury, Fraenkel, Toland, McLeod
in 1978, large amplitude and stagnation point

I Gestner in 1802, Dubreil-Jacotin in 1934 rotational

I Peregrine, Da silva in 1988, Constantin, Escher, Strauss 2000’s

I Ablowitz, Fokas 2006
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Preliminaries

We restrict the problem in 2+1 dimensions (X , y , t).

I the velocity field of the flow
(
U(X , y , t),V (X , y , t)

)
I the bottom B = {y = −d}
I the free boundary S = {y = ξ(X , t)}

We study travelling water waves with propagation speed c > 0.
We introduce x = X − ct such that

I U(X , y , t) = u(x , y)

I V (X , y , t) = v(x , y)

I ξ(X , t) = η(x)
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Preliminaries - Illustration

(a) Free boundary of
travelling wave in
2+1 dimensions.

(b) Reducing one
dimension.

Figure: Examples of travelling waves.

(a) Free boundary of
travelling wave in
2+1 dimensions.

(b) Reducing one dimension.
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The Euler Equations in 2-d

See Constantin & Strauss, Comm. Pure & Appl. Math., 2004.
Under the assumption that the water is inviscid, the two
dimensional incompressible Euler equations, with density ρ = 1
become

ux + vy = 0,

(u − c)ux + vuy = −Px ,

(u − c)vx + vvy = −Py − g ,

where P is the pressure and g is the gravity.
We have the following boundary conditions

P = Patm on S ,

v = (u − c)ηx on S ,

v = 0 on B.

The flow is periodic: P, η and (u, v) have period 2π.
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Stream function - Definition

We first define the relative mass flux by

p0(x) :=

∫ η(x)

−d
(u − c)dy < 0.

In fact, the relative mass flux is independent of x , that is,
p0(x) = p0.
By virtue of the incompressibility condition, define the stream
function ψ(x , y) as the unique solution of the differential equation

ψx = −v , ψy = u − c in D ,

which satisfies
ψ(x ,−d) = −p0 .

Thus
∆ψ = −ω,

where ω = vx − uy .
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Free Boundary Value Problem 1/2

See Constantin, K & Scherzer, SIAM Appl. Math., 2015.

x

y

−π π

η(x)

−d

The constants
g (gravity), p0 (relative mass flux),
Q (hydraulic head) and the function
γ : [p0, 0] 7→ R (vorticity) are given.
Moreover,
for given η, which we assume to
be normalized to satisfy

∫ π
−π η(x)dx = 0,

let ψ = ψ[η] be the solution of

∆ψ = γ(ψ),

with boundary conditions

ψ(x ,−d) = −p0, on B and ψ = 0 on S ,

ψ(π, y) = ψ(−π, y) and ψx(±π, y) = 0, for y ∈ [−d , η(x)].
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Free Boundary Value Problem 2/2

For given η this linear PDE is overdetermined by imposing the
non-linear boundary condition, known as the Bernoulli’s law

BB [ψ] := |∇ψ|2 + 2g(η(x) + d) = Q, on S .

The free boundary problem consists in using the over-determinacy
to determine η.
The free boundary value problem can also be viewed as solving an
operator equation

G(η) = 0 ,

where G : η 7→ BB [ψ[η]].
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The vorticity function

Using the condition u < c , we will show that there exists a
function γ, s.t.

ω = −γ(ψ).

Pxy = Pyx

in the Euler equations yield

−c(uxy − vxx) + u(uxy − vxx) + v(uyy − vxy ) = 0

or
−c(uy − vx)x + u(uy − vx)x + v(uy − vx)y = 0.

Use ω = vx − uy .
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The vorticity function

Use ω = vx − uy

cωx − uωx − vωy = 0.

(c − u)ωx − vωy = 0.

Recall from the definition of the stream function

ψx = −v , ψy = u − c .

−ψyωx + ψxωy = 0

By the condition u < c, we get

∇ψ ‖ ∇ω.

Hence, ψ and ω have the same level set and ω = −γ(ψ).
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Boundary Conditions

We have

ψ|S − ψ|B =

∫ η(x)

−d
ψydy =

∫ η(x)

−d
(u − c)dy = p0.

Thus
ψ = 0 on S .

Finally, because the function ψ is periodic on (−π, π) and even it
follows that

ψ(π, y) = ψ(−π, y) for y ∈ [−d , η(x)]

and
ψx(±π, y) = 0 for y ∈ [−d , η(x)].

From the literature the evenness of ψ reflects the requirement that
u and η are symmetric while v is antisymmetric around the line
located strictly below the wave crest x = 0. Any solution with a
free surface S that is monotone between crest and trough has to
be symmetric
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Boundary Conditions - Bernoulli’s law

The Euler’s equations read

−Py = (u − c)uy + vvy + g + (u − c)ω

−Px = (u − c)ux + vvx − vω

Equivalently

(u − c)2 + v2

2
+ gy + P(x , y) + Γ(−ψ) = constant,

where

Γ(ψ) =

∫ ψ

0
γ(−s)ds .

Introducing the constant

Q = 2(constant + gd − Patm) ,

called the hydraulic pressure we get that

BB [ψ] :=|∇ψ|2 + 2g(y + d)− Q

=v2 + (u − c)2 + 2g(η(x) + d)− Q = 0 on S .
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Dubreil-Jacotin transformation

See Constantin & Strauss, Comm. Pure & Appl. Math., 2004.
Since, ψ(x , y) is

I constant in B and S

I strictly decreasing in y

the height h above the flat bottom is a single-valued function of ψ.
Let

q = x , p = −ψ(x , y).

x

y

−π π

η(x)

−d

q = x
p = −ψ

q

p

−π π

0

p0

Figure: Dubreil-Jacotin transformation
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The height function

Define
h(q, p) = y + d .

Then

hq =
v

u − c
, hp =

1

c − u
, v = −hq

hp
, u = c − 1

hp

and

∂q = ∂x−
v

u − c
∂y , ∂p =

1

c − u
∂y , ∂x = ∂q−

hq
hp
∂p, ∂y =

1

hp
∂p.

Using the main equation derived from the Euler equations with the
above formula for ∂q we find

ωq = ωx −
v

u − c
ωy = 0, u < c

i.e.
ω = −γ(−p).
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The height equation

Now compute −γ(−p) = ω = vx − uy with usage of the above
equations

−γ(−p) = ∂xv − ∂yu =

(
∂q −

hq
hp
∂p

)(
−hq
hp

)
− 1

hp
∂p

(
c − 1

hp

)
=
−hphqq + hqhpq

h2p
−
−hphqhpq + h2qhpp

h3p
− hpp

h3p
.

Moreover,

|∇ψ|2 = v2 + (u − c)2 =
1 + h2q
h2p

.
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The height equation

The boundary value problem

H[h] := (1 + h2q)hpp − 2hphqhpq + h2phqq − γ(−p)h3p = 0, (q, p) ∈ D

B0[h] := 1 + h2q + (2gh − Q)h2p = 0, p = 0,

B1[h] := h = 0, p = p0,

where D is the rectangle (−π, π)× (p0, 0),
h even and 2π-periodic in q.
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Laminar solutions

Begin with the laminar flow, i.e. independent of q. Then the BVP
becomes

Hpp − γ(−p)H3
p = 0, p0 < p < 0,

1 + (2gH − Q)H2
p = 0, p = 0,

H = 0, p = p0.

Hence,

H(p) =

∫ p

p0

ds√
λ− 2Γ(s)

,

where Γ(s) =

∫ s

0
γ(−p)dp and λ satisfies the integral equation

Q = λ+ 2g

∫ 0

p0

dp√
λ− 2Γ(p)

.
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Linearized solutions - Variational formulation

For γ(−p) = γ, constant, linearise the system of equations around
H(p):

0 =
δH
δH

:=
d

dε
H[H + εm]

∣∣∣∣
ε=0

.

We get

mpp + H2
pmqq = 3γH2

pmp, (q, p) ∈ D,

gm = λ3/2mp, p = 0,

m = 0, p = p0,

where m is even and 2π-periodic in q.
Under some explicit condition, there exist

I λ∗ > 2Γmax = 2 max
p∈[p0,0]

Γ(p) > 0

I solution m(q, p).
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Bifurcation

This specific value of λ∗ defines Q∗ = Q(λ∗) and an explicit
integral representation of H∗(p) = H(p;λ∗).
Now, let

T =
{(

Q(λ),H(p;λ)
)
, λ > −2Γmin

}
be the curve of the laminar flows.

It is shown that (Q∗,H∗) is a bifurcation point.

lam
inarno

n-
la

mi
nar

T

(Q∗, H∗)

Figure: Bifurcation on the curve of laminar flows.
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Solutions - The irrotational case

For the irrotational case the perturbed solution is given by

h(q, p; b) = H∗(p) + b cos q M(p),

where the laminar flow H∗ is obtained analytically, i.e.,

H∗(p) =
p − p0√
λ∗

and Q∗ is readily obtained by

Q∗ = λ∗ − 2gp0√
λ∗
,

where λ∗ > 0 is the solution of

λ+ g tanh

(
p0√
λ

)
= 0.

Moreover,

M(p) = sinh

(
p − p0√
λ∗

)
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Solutions - The constant vorticity case

When γ =constant, the laminar flow H∗ is given by

H∗(p) =

√
λ∗ − 2pγ −

√
λ∗ − 2p0γ

γ

and

Q∗ = λ∗ − 4gp0√
λ∗ +

√
λ∗ − 2p0γ

,

where λ∗ > 0 is the solution of the equation

tanh

(√
λ−
√
λ− 2p0γ

γ

)
=

λ

g − γ
√
λ
.

Moreover,

M(p) =
1√

λ∗ − 2pγ
sinh

(√
λ∗ − 2pγ −

√
λ∗ − 2p0γ

γ

)
.
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Linearized solutions - Asymptotic form

For γ(−p) =constant, we consider a parametrized family of
functions of the form

ĥ(q, p) = h0(p) + bh1(q, p), for b ∈ R ,

where h0 is the laminar flow, i.e the q-independent solution.
Formulate and find the solution of the BVP for h1 such that

H[ĥ](p, q) = O(b2) , B0[ĥ](q) = O(b2) and B1[ĥ](q) = 0 .
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Higher order solutions

For γ(−p) =constant, we consider a parametrized family of
functions of the form

ĥ(q, p) = h0(p) + bh1(q, p) + b2h2(q, p), for b ∈ R ,

where h0 is the laminar flow, i.e the q-independent solution. We
analytically determine the explicit formulas for h1 and h2 such that

H[ĥ](p, q) = O(b3) , B0[ĥ](q) = O(b3) and B1[ĥ](q) = 0 .
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Higher order- Equation and solutions

See Constantin, K & Scherzer, NonL.Anal.-Real World Appl., 2015.
h2 satisfies the following linear BVP

(h2)pp + H2
p(h2)qq − 3γH2

p(h2)p = P1[h0, h1] = known, (q, p) ∈ D,

(h2)p − gH3
ph2 = P2[h0, h1] = known, p = 0,

h2 = 0, p = p0,

where h2 is even and 2π-periodic in q.
For γ = 0 we get the formula

h2(q, p) = A sinh

(
2
p − p0√

λ

)
cos(2q)+

1

4
sinh

(
2
p − p0√

λ

)
+B(p−p0).

For γ 6= 0 the formula is of the same form.
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Figures

(a) The height along the
streamlines for two periods.

(b) The vertical velocity v
along the streamlines for one
period.

(c) The water pressure for
one period.

Figure: Constant vorticity γ = −1.5.
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Generalization - Definitions

Define the approximation for the hydraulic head of the flow,

Q ≈ Q(2N)(b) = Q∗ +
N∑

k=1

Q2kb
2k , b ∈ R. (1)

Define the approximation for the height function h(q, p;Q),

h(q, p;Q) ≈ h(2N+1)(q, p; b) =
2N+1∑
n=0

hn(q, p)bn, (2)

with

h2k(q, p) =
k∑

m=0

cos(2mq)f 2k2m(p)

and

h2k+1(q, p) =
k∑

m=0

cos((2m + 1)q)f 2k+1
2m+1(p),

where f 00 (p) = H(p;λ∗).
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Generalization - Theorem (K, submitted )

Let g , p0, γ be fixed. Let λ∗ be defined as the solution of the
equation

tanh

(√
λ−
√
λ− 2p0γ

γ

)
=

λ

g − γ
√
λ

and Q∗ given by

Q∗ = λ∗ − 4gp0√
λ∗ +

√
λ∗ − 2p0γ

.

They exist specific sets of functions {hn(q, p)}2N+1
n=1 and constants

{Q2k}Nk=1, such that the function h(2N+1)(q, p; b) defined in (2) is
satisfying the system

H[h(2N+1)](q, p) = O(b2N+2) ,

B0[h(2N+1)](q) = O(b2N+2) and B1[h(2N+1)](q) = 0 ,

under the constraint that the hydraulic head Q is given by (1).
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Figures - On the free boundary
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(a) The free boundary η(x).
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(b) The vertical velocity v .
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(c) The water pressure on
the flat the bottom.

Figure: For different values of constant vorticity γ.
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Figures - Fifth order approximation
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(a) The height of the water h.

-3 -2 -1 1 2 3

-0.15

-0.10

-0.05

0.05

0.10

0.15

(b) The vertical velocity v .

Figure: On the streamlines.
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Figure: The free boundary.
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Work in progress and future plans

I Non-constant vorticity.

I Construction of an algorithm based on the expansion for h
and Q.

I Iterative algorithms with initial guess the approximate solution
ĥ.
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Figures

(a) Free boundaries.
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(b) The wave height.

Figure: For different values of vorticity

Thank you for your attention.
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(a) Free boundaries.
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(b) The wave height.

Figure: For different values of vorticity

Thank you for your attention.
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