The Percolation problem: Solution with smart simulations

Panos Argyrakis

Department of Physics

University of Thessaloniki

The percolation problem

Coppe extrest bitational

Introduction to PERCOLATION THEORY

Revised Second Edition

DIETRICH STAUFFER AND AMNON AHARONY

Convergition Material

Béla Bollobás and Oliver Riordan

What is the problem?

- system made of 2 types of entities
- open/closed, true/false, conducting/insulating
- randomly mixed
- fixed ratio of open/closed, called "p"
- p in the range 0<p<1
- adjacent entities of same type form clusters
- clusters depend on topology
- can be on lattice sites or on lattice bonds

Site or bond percolation

site bond

Percolation phase transition

- focus on largest cluster only
- size increases abruptly at the critical point
- system goes through a phase transition from "insulating" to "conducting"
- 2^{nd} order phase transition, $\Delta H=0$

Percolation simulation

$$P_{\text{max}} = \frac{m_{\text{max}}}{pN^2}$$

$$I_{\alpha v} = \sum_{m=1}^{m_{\text{max}}} \frac{i_m m^2}{p N^2}$$

$$I_{av} = I_{av} - \frac{i_{\text{max}} * m_{\text{max}}^2}{p * N^2}$$

$$I'_{av} = \sum_{m=1}^{m-m_{max}} \left(\frac{i_{m} \cdot m^{2}}{p \cdot N^{2}} \right)$$

P(max)

How can we estimate p_c ?

- several techniques have been developed
- square lattice (site percolation) $p_c = 0.5927...$
- cannot be proven analytically
- square lattice (bond percolation) $p_c = 0.5000$
- simple cubic(site) $p_c = 0.3116...$
- simple cubic (bond) $p_c = 0.2488...$
- p_c strongly depends on the lattice type
- the more nearest neighbors, the lower the p_c

Cluster Multiple Labeling Technique (CMLT)

- sweep the lattice from one end to the other
- for every cluster that appears give a different index number
- everytime 2 clusters join, they become one cluster
- "brute force" method: go back and merge the index numbers of the 2 clusters into 1 index number only. Need to sweep entire lattice
- CMLT method: need only a single sweep for the same job
- Invented by Hoshen (1976), called Hoshen-Kopelman algorithm

What happens when 2 clusters coalesce

- we need to add the 2 sizes into 1
- we change the label of the index, but NOT the index itself

Before the joining:

$$L(1)=1, L(2)=2, L(3)=3....$$

After joining:

Part (a)

Part (b)

50	0	50	50	0	0	0	18	18	0	26	0	50	0	0	0	50	50	0	50
50	50	50	50	0	50	0	0	0	50	0	50	50	50	50	50	50	0	50	50
				-			-	-		-									
50	0	50	0	50	50	0	0	0	50	50	50	50	50	50	50	50	0	50	0
0	50	50	50	50	0	0	50	50	50	50	0	50	50	50	50	50	0	50	50
0	0	0	0	50	50	50	50	0	50	0	50	50	0	0	0	50	0	50	50
0	0	0	0	0	50	50	50	0	0	0	0	0	0	0	0	50	50	50	0
22	22	22	0	0	50	50	50	50	0	27	27	0	37	37	37	0	0	50	0
22	22	22	0	50	50	50	50	50	0	27	0	34	0	0	0	0	0	50	50
22	22	0	0	50	50	0	0	0	0	27	27	0	38	0	0	0	0	0	50
22	0	7	0	0	50	0	14	14	14	0	0	0	38	38	0	0	0	50	50
22	22	0	22	22	0	14	14	14	14	0	32	0	0	38	38	38	0	0	0
0	22	22	22	22	0	14	0	14	0	28	0	22	0	38	38	0	0	0	42
22	22	22	0	0	14	14	0	0	0	0	0	22	0	0	38	0	46	0	42
22	22	22	22	22	0	0	22	22	0	22	22	22	22	22	0	44	0	0	42
0	22	0	22	22	0	22	22	22	22	22	22	22	22	22	0	0	42	0	42
0	22	0	22	22	22	22	0	22	22	0	22	0	22	0	40	0	42	42	42
22	0	22	22	0	0	0	22	22	22	22	0	0	0	40	40	0	42	42	42
22	22	22	0	0	0	17	0	22	0	22	0	0	36	0	0	42	42	0	42
0	22	22	22	0	0	17	0	0	25	0	0	0	36	0	42	42	0	48	0
0	0	22	0	12	0	0	23	23	0	0	0	36	36	36	0	0	48	48	48

Part (c)

http://kelifos.physics.auth.gr

--->courses --->percolation

Achlioptas process

- developed in 2010
- new method of preparing the system
- use probe sites and fill lattice in such a way as to delay the criticality

Achlioptas process - product rule

Many different variations

- Sum or product
- Allow the largest or the smallest
- Attraction or repulsion

Critical percolation threshold values

Model	p_c	d_f
Classical percolation	0.5927	1.89 ± 0.02
Attraction model $(k = 1)$	0.5618	1.89 ± 0.03
Repulsion model $(k = 1)$	0.6100	1.88 ± 0.03
Product rule (delay)	0.7554	1.99 ± 0.01
Product rule (early emergence)	0.5315	1.87 ± 0.02
Sum rule (delay)	0.6942	1.99 ± 0.01
Sum rule (early emergence)	0.5433	1.88 ± 0.02

Summary: percolation

- Old problem
- Most useful paradigm in phase transitions (similar as Ising model)
- CMLT was first method, now many more
- Very useful in many-many different fields
- Problem is solved, but new variants emerge