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1 Introduction

Earthquakes have always been one the most intriguing natural phenomena for
mankind. The abruptness of the shaking ground and the devastating consequences
for the human environment were always attracting people’s fear and wonder.
Despite the large amount of effort that has been dedicated in understanding the
physical processes that lead to the birth of an earthquake and the significant pro-
gress that has been achieved in this field, the prediction of an upcoming earthquake
still remains a challenging question (Nature debates 1999).

Concerning the physics of earthquakes, many questions have not yet been
answered since the phenomenon is subjected to many uncertainties and degrees of
freedom. It is true that we have a good understanding of the propagation of seismic
waves through the Earth and that given a large set of seismographic records, we are
able to reconstruct a posteriori the history of the fault rupture. However, when we
consider the physical processes leading to the initiation of a rupture with a sub-
sequent slip and its growth through a fault system, giving rise to an earthquake, then
our knowledge is really limited. Not only the friction law and the rules that govern
rupture evolution are largely unknown, but also the role of many other processes
such as plasticity, fluid migration, chemical reactions, etc., and the couplings
among them, remain unclear (Main et al. 1989, 1992; Sammonds 2005; Sammonds
and Ohnaka 1998; Vallianatos et al. 2004).
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Despite the extreme complexity that characterizes the mechanism of the earth-
quake generation process, simple phenomenology seems to apply in the collective
properties of seismicity. Fault and earthquake populations present scaling relations
that seem to be universal in the sense that are appearing in a variety of tectonic
environments and scales that vary from the laboratory, to major fault zones and
plate boundaries. The best known is the Gutenberg-Richter scaling relation
(Gutenberg and Richter 1944) that indicates power-law scaling for the earthquake
size distribution. Short and long-term clustering, power-law scaling and
scale-invariance have also been exhibited in the temporal evolution of seismicity
(Kagan and Jackson 1991). In addition, earthquakes exhibit fractal spatial distri-
bution of epicenters and they occur on fractal-like structure of faults (Turcotte
1997). All these properties provide observational evidence for earthquakes as a
nonlinear dynamic process (Kagan 1994).

Due to these properties, concepts such as fractals, multi-fractals, non-linear
processes and chaotic dynamical systems are becoming increasingly fundamental
for analyzing data and understanding processes in geosciences. In recent years,
there is a growing interest on approaching seismicity and other natural hazards,
regarding the science of complex systems and the fractal nature of these phenomena
(Bak and Tang 1989; Bak et al. 1988; Vallianatos 2009). In the context of critical
point phenomena (see Sornette 2004), “self-organized criticality” (SOC) has been
proposed by Bak et al. (1987) as a possible driving mechanism that produce the
scale-invariant properties of the earthquake populations, such as the G-R scaling
relation (see also Bak and Tang 1989; Sornette and Sornette 1989). According to
this theory, Earth’s crust is in a near critical state that spontaneously organizes into
an out-of-equilibrium state to produce earthquakes of fractal size distributions.

Regarding the physics of “many” earthquakes and how this can be derived from
first principles, one may wonder:

• How can the collective properties of a set formed by all earthquakes in a given
region, be derived?

• How does the structure of seismicity, as formed by all earthquakes, depends on
its elementary constituents—the earthquakes? What are these properties?

It may be that these collective properties are largely independent on the physics
of the individual earthquakes, in the same way that many of the properties of a gas
or a solid do not depend on the constitution of its elementary units. It is natural then
to consider that the physics of many earthquakes has to be studied with a different
approach than the physics of one earthquake and in this sense we can consider the
use of statistical physics not only appropriate but also necessary to understand the
collective properties of earthquakes. A significant attempt is given in a series of
works (Main 1996; Main and Al-Kindy 2002; Rundle et al. 1997, 2003) where
classic statistical physics are used to describe seismicity. Then a natural question
arises. What type of statistical physics is appropriate to commonly describe effects
from the microscale and crack opening level to the level of large earthquakes and
plate tectonics?
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An answer to the previous question could be non-extensive statistical physics
(NESP), originally introduced by Tsallis (1988). The latter is strongly supported by
the fact that this type of statistical mechanics is the appropriate methodological tool
to describe entities with (multi) fractal distributions of their elements and where
long-range interactions or intermittency are important, as in fracturing phenomena
and earthquakes. NESP is based on a generalization of the classic Boltzmann-Gibbs
entropy and has the main advantage that it considers all-length scale correlations
among the elements of a system, leading to an asymptotic power-law behavior. So
far, NESP has found many applications in nonlinear dynamical systems including
earthquakes (Tsallis 2009). In a series of recent publications, it has been shown that
the collective properties of the earthquake and fault populations from the laboratory
scale (Vallianatos et al. 2011a, 2012a, b, 2013; Vallianatos and Triantis, 2012), to
local (Michas et al. 2013), regional (Abe and Suzuki 2003, 2005; Telesca 2010a;
Papadakis et al. 2013) and global scale (Vallianatos and Sammonds 2013) can be
reproduced rather well using the concept of NESP.

In the present chapter, we review some fundamental properties of earthquake
physics (in the geodynamic-laboratory scale) and how these are derived by means
of non-extensive statistical physics. The aim is to understand aspects of the
underlying physics that lead to the evolution of the earthquake phenomenon. We
are focused in a variety of scales, from plate tectonics downscaling to rock fractures
and laboratory seismology, to understand better the fundamentals of earthquake
occurrence and contribute to the seismic hazard assessment, introducing the new
topic of non-extensive statistical seismology.

2 Fundamentals of Non-extensive Statistical Physics

Boltzmann-Gibbs (BG) statistical physics is one of the cornerstones of contem-
porary physics. It establishes a remarkably useful bridge between the mechanical
microscopic laws and macroscopic description using classical thermodynamics.
The theory centrally addresses the very special stationary state—denominated
thermal equilibrium. This macroscopic state has fundamental importance, since it is
the foundation in Boltzmann’s famous molecular chaos hypothesis made in 1871.
However, BG theory is not universal. It has a limited domain of applicability
(Tsallis 2009). Outside this domain, its predictions can be slightly or even strongly
inadequate. There was a conflict, among many physicists as well as other scientists,
that BG mechanics and standard thermodynamics are always valid and universal. It
is certainly fair to say that always valid, in precisely the same sense that Newtonian
mechanics is always valid; they indeed are. But again in complete analogy with
Newtonian mechanics, we can by no means consider them as universal.

Central in BG statistical physics is the associated entropy that for the discrete
states of a system has the form
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SBG ¼ �kB
XW
i¼1

pi ln pi; with
XW
i¼1

pi ¼ 1 ð2:1Þ

where SBG is Boltzmann-Gibbs entropy, kB is Boltzmann’s constant, pi is a set of
probabilities and W is the total number of microscopic configurations. One of the
main characteristics of SBG is additivity, namely the proportionality to the number
of the systems’ elements. According to this property, for any two probabilistically
independent systems A and B, i.e. if the joint probability satisfies pAþB

ij ¼
pAi p

B
j 8 i; jð Þð Þ; SBG satisfies

SBGðAþ BÞ ¼ SBGðAÞ þ SBGðBÞ: ð2:2Þ

Although BG entropy seems the correct one to be used in a large and important
class of physical systems with strongly chaotic dynamics (positive maximal
Lyapunov exponent), an important class of weakly chaotic systems (where the
maximal Lyapunov exponent vanishes) violates this hypothesis. Additionally, if the
effective microscopic interactions and memory are short-ranged (for instance
Markovian processes) and the boundary conditions are smooth, then BG statistical
mechanics seems to correctly describe nature. On the other hand, if some or all of
these restrictions are violated (long-range interactions, non-markovian microscopic
memory, multifractal boundary conditions and multifractal structures), then another
type of statistical mechanics seems appropriate to describe nature (see for instance
Zaslavsky 1999; Tsallis 2001).

Naturally, a question arises: Is it possible to address some of these important,
though anomalous in the BG sense, situations with concepts and methods similar to
those of BG statistical mechanics? Many theoretical, experimental and observa-
tional indications are nowadays available and point towards an affirmative answer.
To overcome at least some of these anomalies that seem to violate BG statistical
mechanics, non-extensive statistical physics (NESP) was proposed by Tsallis in
(1988) that recovers the extensive BG as a particular case. The associated gen-
eralized entropic form for the discrete case is

Sq ¼ kB
1�PW

i¼1 p
q
i

q� 1
; q 2 R with

XW
i¼1

pi ¼ 1 ð2:3Þ

where Sq is Tsallis entropy and q is the entropic index that represents a measure of
the non-extensivity of a system. Sq recovers SBG in the limit q → 1. Although
Tsallis entropy and Boltzmann-Gibbs entropy share a variety of thermodynamical
properties like concavity (relevant for the thermodynamical stability of the system),
experimental results, extensivity (relevant for having a natural matching with the
entropy as introduced in classical thermodynamics), and finiteness of the entropy
production per unit time (relevant for a variety of real situations where the system is
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striving to explore its microscopic phase space in order to ultimately approach some
kind of stationary state) (see Tsallis 2009 for the full list of these properties), SBG is
additive, whereas Sq (q ≠ 1) is non-additive. This property is directly related to the
definition of Sq in Eq. (2.3). Indeed, for any two probabilistically independent
systems A and B, i.e. if the joint probability satisfies pAþB

ij ¼ pAi p
B
j 8 i; jð Þð Þ; Tsallis

entropy Sq satisfies:

SqðAþ BÞ
k

¼ SqðAÞ
k

þ SqðBÞ
k

þ ð1� qÞ SqðAÞ
k

SqðBÞ
k

: ð2:4Þ

The origin of non-additivity comes from the last term on the right hand side of
this equation and is the fundamental principle of non-extensive statistical physics
(Tsallis 2009). The cases q > 1, q = 1 and q < 1 correspond to sub-additivity,
additivity and super-additivity respectively.

Tsallis idea of introducing the non-additive entropy Sq was inspired by simple
physical principles and the multifractal concept (see Tsallis 2009 for a thorough
description). A bias in the probabilities of the different states in a system is intro-
duced by using the entropic index q. Given the fact that generically 0 < pi < 1, we
have that pqi [ pi if q\1 and pqi\pi if q[ 1: Therefore, q < 1 enhances the rare
events with probabilities close to zero, whereas q > 1 enhances the frequent events,
i.e., those whose probabilities are close to unity. Following Tsallis (2009), it is
natural to introduce an entropic form passed on pqi : The entropic form must be
invariant under permutation and the simplest expression which is consistent with
this has the form Sq ¼ F

Pw
i¼1 p

q
i

� �
; where F(x) is a continuous function. The

simplest form of F(x) is the linear one, leading to Sq ¼ C1 þ C2
Pw

i¼1 p
q
i : As any

entropy, Sq must be a measure of disorder leading to C1 + C2 = 0 (Tsallis 2009) and
hence Sq ¼ C1 1�Pw

i¼1 p
q
i

� �
: In the limit q → 1 the entropic form Sq approaches

the Boltzmann-Gibbs expression and the simplest way for this is when C1 = kB/
(q − 1).

Tsallis entropy is determined by the microscopic dynamics of the system. This
point is quite important in practice. If the microscopic dynamics of the system are
known, we can determine the corresponding value of entropic index q from the first
principles. As it happens, this precise dynamics is most frequently unknown for
many natural systems. In this case, a way out that is currently used, is to check the
functional forms and then determine the appropriate values of q by fitting.
Moreover, there are many complex systems for which one may reasonably argue
that they belong to the class that is addressed by non-extensive statistical concepts,
but whose microscopic dynamics is inaccessible. For such systems, it appears as a
sensible attitude to adopt the mathematical forms that emerge in the theory, e.g. q-
exponentials (see below) and then obtain the correct graphs through fitting the
corresponding value of q and of similar characteristics.
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2.1 Optimizing Tsallis Entropy Sq

Suppose that we have a continuous variable X with a probability distribution p(X).
In geophysics, this variable can be for instance seismic moment (Mo), inter-event
times (τ) or distances (r) between the successive earthquakes or the length of faults
(L) in a given region.

For the probability distribution p(X) of the continuous variable X, Tsallis entropy
Sq is given by the integrated formulation as follows:

Sq ¼ kB
1� R pq Xð ÞdX

q� 1
: ð2:1:1Þ

where q the entropic index. In the following we set kB as unity for the sake of
simplicity. We require optimizing Sq under the appropriate constraints. The first
constraint refers to the normalization condition of p(X):

Z1
0

p Xð ÞdX ¼ 1 ð2:1:2Þ

The second constraint is the condition about the generalized expectation value
(q-expectation value), Xq defined as:

Xq ¼ Xq
� � ¼ Z

1

0

XPq Xð ÞdX ð2:1:3Þ

where Pq(X) is the escort probability given (Tsallis 2009) as follows:

Pq Xð Þ ¼ pqðXÞR1
0 pq Xð ÞdX ð2:1:4Þ

Using the standard technique of Lagrange multipliers, the following functional is
maximized:

Uðp; a�; b�Þ ¼ Sq � a�
Zxmax

0

p Xð ÞdX � b�Xq ð2:1:5Þ

where α* and β* represent the Lagrange multipliers.
Imposing that, @U=@p ¼ 0 we obtain the physical probability:
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p Xð Þ ¼ 1� 1� qð ÞbqX
� �1=1�q

Zq
¼ expqð�bqXÞ

Zq
ð2:1:6Þ

where the q-exponential function is defined as (see Tsallis 2009 and references
therein):

expq Xð Þ ¼ 1þ 1� qð ÞX½ �1=ð1�qÞ ð1þ ð1� qÞX� 0Þ
0 ð1þ 1� qð ÞX\0Þ

�
ð2:1:7Þ

whose inverse is the q-logarithmic function: lnq Xð Þ ¼ 1
1�q X1�q � 1ð Þ

The denominator of Eq. (2.1.6) is called q-partition function and is defined as:

Zq ¼
Zxmax

0

expqð�bqXÞdX ð2:1:8Þ

where, bq ¼ b
cqþ 1�qð ÞbXq and cq ¼

Rxmax
0

pq Xð ÞdX
The q-exponential distribution consists a generalization of the Zipf-Mandelbrot
distribution (Mandelbrot 1983), where the standard Zipf-Mandelbrot distribution
corresponds to the case q > 1 (Abe and Suzuki 2003). In the limit q → 1 the q-
exponential and q-logarithmic functions lead to the ordinary exponential and log-
arithmic functions respectively. If q > 1 Eq. (2.1.6) exhibits an asymptotic
power-law behavior with slope −1/(q − 1). In contrast, for 0 < q < 1 a cut-off
appears (Abe and Suzuki 2003, 2005).

In non-extensive statistical physics it has been proposed that the quantity to be
compared with the observed distribution is not the physical probability p(X) but its
associated escort distribution (see Abe and Suzuki 2005; Tsallis 2009; Vallianatos
2009). Following the latter approach, the cumulative distribution function is given
by the expression

Pcumð[XÞ ¼
Z1
Xmin

Pesc
q Xð ÞdX: ð2:1:9Þ

Combining the latter definition with the probability function p(X) we obtain

Pcum [Xð Þ ¼ expq �X=Xoð Þ; ð2:1:10Þ

which after simple algebra leads to ½Pcumð[XÞ�1�q�1
1�q ¼ � X

Xo
: The latter equation

implies that after estimating the appropriate q, which describes the distribution of

the variable X, the lnqðPcumð[XÞÞ ¼ ½Pcumð[XÞ�1�q�1
1�q ¼ � 1

Xo

	 

X; which express the
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q-logarithmic function, is linear with X with slope −1/Xo. In Fig. 1 the q-expo-
nential distribution of Eq. (2.1.10) is plotted for various values of the q index.

In cases where X > Xmin, the cumulative distribution of X assumes value 1 for
X = Xmin. This implies that the aforementioned equation should be slightly changed
(Vallianatos 2013) into the following form, which is more consistent with real
observations:

P [Xð Þ ¼ expqð�X=XoÞ
expqð�Xmin=XoÞ : ð2:1:11Þ

We note that in cases where Xmin ≪ Xo, the latter introduction does not sig-
nificantly change the estimated results.

An interesting question that is brought forth in NESP is which distribution we
shall compare with the observed distribution. The common approach that is most
frequently used is the introduction of the escort probability in the second constraint
and the optimization of Sq as described earlier. Other forms have been developed
and are described thoroughly in Tsallis (2009). Detailed discussions on this subject
can be also found in Wada and Scarfone (2005), Ferri et al. (2005), where it was
shown that the different forms related to the second constraint of the expectation
value are all equivalent and can be transformed one into the other through simple
operations defining q s and Xo s. For instance, if we integrate the physical proba-
bility given in Eq. (2.1.6) instead of the escort probability (Eq. 2.1.4), we obtain the
cumulative probability:

P [Xð Þ ¼ 1� ð1� q0Þ X
X 0
o

� �1=ð1�q0Þ
; ð2:1:12Þ

where q′ = 1/(2 − q) and X′o = (2 − q)/Xo, in relation to q and Xo values in
Eq. (2.1.10) (Picoli et al. 2009). If we apply these transformations for q′ and X′o, the
following form of the cumulative distribution P(>X) is derived (Michas et al. 2013):

P [Xð Þ ¼ 1� ð1� qÞ X
Xo

� �2�q
1�q

: ð2:1:13Þ

Another type of distributions that are deeply connected to statistical physics is
that of the squared variable X2. In BG statistical physics, the distribution of X2

corresponds to the well-known Gaussian distribution. If we optimize Sq for X
2, we

obtain a generalization of the normal Gaussian that is known as q-Gaussian dis-
tribution (see Tsallis 2009) and has the form:

p Xð Þ ¼ p0 1� ð1� qÞ X
Xo


 �2
" #1= 1�qð Þ

: ð2:1:14Þ
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Fig. 1 The q-exponential distribution of Eq. (2.1.10) for various values of q and for X0 = 1 in
log-linear (a) and log-log scales (b). The distribution is convex for q > 1 and concave for q < 1. For
q < 1, it has a vertical asymptote at x = (1 − q)−1 and for q > 1 an asymptotic slope −1/(q − 1). For
q = 1 the standard exponential distribution is recovered
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In the limit q → 1, Eq. (2.1.14) recovers the normal Gaussian distribution. For
q > 1, the q-Gaussian distribution has power-law tails with slope −2/(q − 1), thus
enhancing the probability of the extreme values. Typical examples of q-Gaussians
are plotted in Fig. 2 for various values of q.

2.2 Cases with Two Slopes

There are various cases in earthquake populations where the observed variable
exhibits a distribution with different regions that correspond to different slopes. The
most common example is gamma distribution that exhibits a power-law region for
small and intermediate values and an exponential tail for greater values of the
observed variable. This particular distribution has been used most frequently to
model inter-event times (e.g. Corral 2004) and the global earthquake frequency-size
distribution (e.g. Kagan 1997). In this latter case, an upper bound or taper in the
G-R relation is appearing (Kagan and Jackson 2000) and the G-R relation is
modified to include an exponential tail for modeling greater earthquake magnitudes.
Estimating this upper bound or the correct distribution that corresponds to earth-
quake size distribution is of high importance in probabilistic earthquake hazard
assessments (see for instance Kagan and Jackson 2013) and fundamental in con-
straining insurance risk for the largest events (Bell et al. 2013).

In the following we describe how distributions with crossovers and different
behavior for large values of the observed variable can be derived in the frame of
non-extensive statistical physics, by generalizing the physical probability given in
Eq. (2.1.6).

The generalized probability p(X) given by Eq. (2.1.6) can be alternatively
obtained by solving the nonlinear differential equation:

dp
dX

¼ �bqp
q
i ; ð2:2:1Þ

where q ≠ 1; while Boltzmann-Gibbs (BG) formalism is approached in the limit
q → 1. We can now further generalize the standard representation of NESP, pre-
sented in the previous Sect. (2.1), by considering not only one q index, but a whole
distribution of indices (see Tsallis et al. 1999; Tsekouras and Tsallis 2005). In the
case where crossover to another type of behavior at larger values of the variable X is
observed we can generalize the differential equation Eq. (2.2.1) as:

dp
dX

¼ �brp
r � bq � br
� �

pq: ð2:2:2Þ

Equation (2.2.1) is recovered if r = 0 or if r = q. When 1 ≤ r < q, the solution of
Eq. (2.2.2) is given by:

10 F. Vallianatos et al.



Fig. 2 The q-Gaussian distribution of Eq. (2.1.14) for various values of q and for p0 = 0.5 and
X0 = 1 in linear (a) and log-linear scales (b). For q = 1 the normal Gaussian distribution is
recovered
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X ¼
Z1
p

dx
brxr þ ðbq � brÞxq

¼ 1
br

Z1
p

dx
1
xr

�
bq
br
� 1

	 

xq�2r

1þ ðbqbr � 1Þxq�r

2
4

3
5

and hence

X ¼ 1
br

p�ðr�1Þ � 1
r � 1

�
bq
br
� 1

1þ q� 2r
H 1; q� 2r; q� r; bq

�
br

	 

� 1

	 
h8<
:

�H p; q� 2r; q� r; bq
�
br

	 

� 1

	 
i9=
;

ð2:2:3Þ

with

Hðn; a; b; cÞ ¼ n1þaF
1þ a
b

; 1;
1þ aþ b

c
;�nbc


 �
ð2:2:4Þ

where F is the hypergeometric function.
From the aforementioned solution of Eq. (2.2.2) for 1 ≤ r < q and βr << βq the

asymptotic solution defines three regions. The first one is related with very small
values of the variable X and

p Xð Þ / 1� bqX for 0� X � Xc1; where Xc1 ¼ 1
q� 1

1
bq

ð2:2:5Þ

The second one describes the moderate values and

pðXÞ/ ½ðq� 1)bqX]
�1=ðq�1Þ for Xc1 �X �Xc2; where Xc2 ¼

½ q� 1ð Þbq�
r�1
q�r

½ r � 1ð Þbr�
q�1
q�r

:

ð2:2:6Þ

The third region describes the range of large values of X and

p Xð Þ / ½ r � 1ð ÞbrX��1=ðr � 1Þ for �Xc2: ð2:2:7Þ

A special case of the differential Eq. (2.2.2) is when a crossover from anomalous
(q ≠ 1) to normal (r = 1) statistical mechanics is appearing for the larger values of
the variable X (the truncated G-R relation for instance, described earlier). In this
case, the differential equation Eq. (2.2.2) is modified as:

dp
dX

¼ �b1p� ðbq � b1Þpq ð2:2:8Þ
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and includes both the normal and anomalous cases in the first and second term
respectively. The solution of Eq. (2.2.8) is given by:

p ¼ C 1� bq
b1

þ bq
b1

e q�1ð Þb1X
� ��1=q� 1

ð2:2:9Þ

were C is a normalization factor. For positive βq and β1, p(X) decreases mono-
tonically with increasing X (Vallianatos and Sammonds 2010). It can be easily
verified that in the case where βq ≫ β1 Eq. (2.2.9) defines again three regions,
according to the value of X. The asymptotic behavior of the probability distributions
in these areas, when r = 1, is simplified as

pðXÞ / 1� bqX for 0�X�Xc1 where Xc1 ¼ 1
q� 1

1
bq

ð2:2:10Þ

p Xð Þ / ½ q� 1ð ÞbqX��1=ðq�1Þ for Xc1 �X�Xc2 where Xc2 ¼ 1
½ q� 1ð Þb1�

ð2:2:11Þ

p Xð Þ / b1
bq

" #�1=ðq� 1Þ
e�b1X for X�Xc2 ð2:2:12Þ

where Xc1 and Xc2 are the lower and upper crossover points between the three
regions respectively.

3 Applications in Seismicity

As already mentioned in the introduction of this chapter, seismicity and fault
systems are among the most relevant paradigms of self-organized criticality (Bak
et al. 1987, 2002), representing a complex spatiotemporal phenomenon (e.g.
Telesca et al. 2001, 2002, 2003). Despite the complexity that characterizes frac-
turing and earthquake nucleation phenomena, simple phenomenology seems to
apply in their collective properties, where empirical scaling relations are known to
describe the statistical properties of the fracture/fault and earthquake populations in
a variety of scales. The best known is the Gutenberg-Richter (G-R) scaling relation
(Gutenberg and Richter 1944) that expresses fractal power-law dependence in the
frequency of earthquakes with energy (seismic moment) E with E:

PðEÞ�E�B ð3:1Þ

If we consider that the earthquake energy E is related to the magnitude M as
E� 101:5M (Kanamori 1978) and for B ¼ 1þ b=1:5; the last expression can be
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alternatively stated as Nð[MÞ� 10�bM ; where N(>M) is the number of earth-
quakes with magnitude equal or greater than M and b is a constant known as the
seismic b-value.

Another well-known scaling relation is the modified Omori formula (Omori
1894; Utsu et al. 1995) where the aftershock production rate n tð Þ ¼ dNðtÞ=dt after
main earthquakes decays as a power-law with time t:

n tð Þ ¼ Kðt þ cÞ�p ð3:2Þ

where K and c are constants that are determined from the data and p is the
power-law exponent.

Power-laws and fractality have been also found in the space of earthquake
locations and laboratory AE (Kagan and Knopoff 1980; Hirata and Imoto 1991) and
at the time of their occurrence (Kagan and Jackson 1991; Turcotte 1997).

Crack and fault populations are characterized by scale-invariance so that their
length distribution decays as a power-law:

N [ Lð Þ ¼ AL�D ð3:3Þ

where N is the number of faults with length equal or greater than L, A is a constant
and D is the scaling exponent (Main 1996; Turcotte 1997).

The properties that are appearing in the earthquake and fault populations, such as
those described above are the central subject in the statistical physics approach to
seismicity. The necessity of statistical physics in deriving probability distributions for
describing seismicity have been highlighted in the early works of Berrill and Davis
(1980), Main and Burton (1984), where classic statistical physics and Shannon’s
information entropy (Shannon 1948) have been used to assess the probability of large
earthquakes. Reviews for the classic statistical physics approach in seismicity can be
found in Main (1996), Rundle et al. (2003) and Kawamura et al. (2012).

In the following sections we describe how appropriate probability distributions
for the description of seismicity and the fault systems can be derived in the frame of
NESP by using the maximum entropy principle and how these are applied to
fracture and earthquake data, providing various examples for different case studies.

3.1 Non-extensive Pathways in Earthquake Size
Distributions

3.1.1 The Fragment-Asperity Model

Earthquakes are originating from the deformation and sudden rupture of parts of the
earth’s brittle crust releasing energy and generating elastic waves that are propa-
gating in the earth’s interior. The generated waves are recorded in seismographic
stations and properties such as the location and seismic moment of the earthquake

14 F. Vallianatos et al.



are calculated from the waveforms. Primarily, the earthquake generation process is
a mechanical phenomenon where stick-slip frictional instability in pre-existing fault
zones has a dominant role (e.g. Scholz 1998). Some well-known models, such as
the spring-block model (Burridge and Knopoff 1967) and the cellular automaton
model (Olami et al. 1992) have been developed to describe the phenomenology of
this mechanism. In these models a stick-slip behavior in a set of moving blocks
interconnected via elastic springs reproduce well some of the known empirical
relations such as the Gutenberg-Richter (G-R) scaling law.

Consisted to the idea of stick-slip frictional instability in faults, Sotolongo-Costa
and Posadas (2004) developed the fragment-asperity interaction model to describe
earthquake dynamics in a non-extensive context. In this model, the triggering
mechanism of an earthquake involves the interaction between the irregular surfaces
of the fault planes and the fragments of various sizes and shapes that fill the space
between them. When the accumulated stress exceeds a critical value in a particular
fault zone, the fault planes are slipping, displacing the fragments and breaking
possible asperities that hinder their motion, releasing energy (for an asperity based
model for fault dynamics see De Rubeis et al. 1996). Sotolongo-Costa and Posadas
considered that the released seismic energy is related to the size of the fragments
and by using a non-extensive formalism they established an energy distribution
function (EDF) for earthquakes based on the fragments-size distribution. Since the
standard Boltzmann-Gibbs formalism cannot account for the presence of scaling in
the fragmentation process, NESP seems more adequate to describe the phenome-
non. The latter is also supported by the scale-invariant properties of fragments
(Krajinovic and Van Mier 2000), the presence of long-range interactions among the
fragmented materials (Sotolongo-Costa and Posadas 2004) and laboratory experi-
ments in fracturing processes (Vallianatos et al. 2011, 2012a).

In the following we describe how the fragment-asperity model of
Sotolongo-Costa and Posadas (2004), as was later revised by Silva et al. (2006) and
Telesca (2012), is derived in the frame of NESP.

In terms of the probability p(σ) of finding a fragment of area σ, the maximum
Tsallis entropy Sq is expressed as:

Sq ¼ kB
1� R pqðrÞ dr

q� 1
: ð3:1:1Þ

The sum of all the possible states in the definition of entropy is here expressed
through the integration in all the sizes of the fragments. In what follows we set kB
equal to unity for the sake of simplicity. The probability p(σ) is obtained after
maximization of Sq under the appropriate two constraints. The first is the normal-
ization of p(σ):

Z1
0

pðrÞdr ¼ 1: ð3:1:2Þ
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The second is the condition about the q-expectation value (Tsallis 2009):

rq ¼ rh iq¼
R1
0 rpqðrÞdrR1
0 pqðrÞdr : ð3:1:3Þ

This last condition reduces to the definition of the mean value in the limit q→ 1.
By using the Lagrange multipliers technique, the functional entropy to be

maximized is (Silva et al. 2006):

dS�q ¼ d Sq þ a
Z1
0

pðrÞdr� brq

0
@

1
A ¼ 0; ð3:1:4Þ

where α and β are the Lagrange multipliers. After some algebra, the following
expression for the fragment size distribution function can be derived (Silva et al.
2006):

pðrÞ ¼ 1� ð1� qÞ
ð2� qÞ ðr� rqÞ

� �1=ð1�qÞ
: ð3:1:5Þ

The proportionality between the released relative energy E and the size of the
fragments r is now introduced as E * r3 (Silva et al. 2006), in accordance to the
standard definition of seismic moment scaling with rupture length (Lay and Wallace
1995). The proportionality between the released relative energy E and the
three-dimensional size of the fragments r3 now becomes:

r� rq ¼ E
aE


 �2=3

: ð3:1:6Þ

In the last equation, σ scales with r2 and αE is the proportionality constant
between E and r3 that has the dimension of volumetric energy density. By using the
latter equation, the energy distribution function (EDF) of the earthquakes can be
written on the base of the relationship between density functions of correlated
stochastic variables (Telesca 2012):

pðEÞ ¼ 1
dE
dr

p
E
aE


 �2=3

þ rq

" #
¼ dr

dE
1� ð1� qÞ

ð2� qÞ
E
aE


 �2=3
" # 1

ð1�qÞ

; ð3:1:7Þ
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where the term dσ/dE can be obtained by differentiating Eq. (3.1.6):

dr
dE

¼ 2
3
E�1

3

a
2
3
E

dE: ð3:1:8Þ

The EDF now becomes (Silva et al. 2006; Telesca 2012):

pðEÞ ¼ C1E�1
3

1þ C2E
2
3

h i1=ðq�1Þ ; ð3:1:9Þ

with C1 ¼ 2

3a
2
3
E

and C2 ¼ 1�qð Þ
2�qð Þa

2
3
E

:

In the latter expression, the probability of the energy is p(E) = n(E)/N, where n
(E) corresponds to the number of earthquakes with energy E and N is the total
number of earthquakes. A more viable expression can now be obtained by intro-
ducing the normalized cumulative number of earthquakes given by the integral of
Eq. (3.1.9):

N E[Ethð Þ
N

¼
Z1
Eth

p Eð ÞdE; ð3:1:10Þ

where N(E > Eth) is the number of earthquakes with energy E greater than the
threshold energy Eth and N the total number of earthquakes. Substituting Eq. (3.1.9)
in Eq. (3.1.10) the following expression is derived:

N E[Ethð Þ
N

¼ 1� 1� qE
2� qE


 �
E
aE


 �� �2�qE
1�qE

: ð3:1:11Þ

Now the latter expression can be written in terms of the earthquake magnitude
M, if we consider that E is related to M as M ¼ 2

3 log Eð Þ (Kanamori 1978). Then
Eq. (3.1.11) becomes:

N [Mð Þ
N

¼ 1� 1� qE
2� qE


 �
10M

a2=3E

 !" #2�qE
1�qE

: ð3:1:12Þ

In real earthquake catalogues the threshold magnitude M0, i.e. the minimum
magnitude M0 of the catalogue, has to be taken in account and Eq. (3.1.12) should
be slightly changed to (Telesca 2012):
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N [Mð Þ
N

¼
1� 1�qE

2�qE

	 

10M

a2=3E


 �

1� 1�qE
2�qE

	 

10M0

a2=3E


 �
2
664

3
775

2�qE
1�qE

: ð3:1:13Þ

The fragment-asperity model describes from the first principles the cumulative
distribution of the number of earthquakes N greater than a threshold magnitude M,
normalized by the total number of earthquakes. The constant aE expresses the
proportionality between the released energy and the fragments of size r, while qE is
the entropic index. This model has been recently applied to various regional
earthquake catalogs, covering diverse tectonic regions (Silva et al. 2006; Vilar et al.
2007; Telesca 2010a, b, c, 2011; Michas et al. 2013; Papadakis et al. 2013) and
volcano related seismicity (Telesca 2010b; Vallianatos et al. 2013). In comparison
to the G-R scaling relation (Eq. 3.1), the fragment-asperity model describes
appropriately the energy distribution in a wider range of magnitudes, while for
values above some threshold magnitude, the G-R relation can be deduced as a
particular case for b = (2 − qE)/(qE − 1) (Telesca 2012).

Some relevant paradigms for the application of the fragment—asperity model to
earthquake data are given in Figs. 3, 4 and 5. In Fig. 3 the model is applied to the
energy distribution function of earthquakes in the West Corinth rift (Greece),
according to Eq. (3.1.9). In this case the model describes better than the G-R
relation (Eq. 3.1) the observed distribution for the lower earthquake energies, while
after some threshold energy the distribution decays as a power-law (Michas et al.
2013). Another example comes from the recent unrest at the Santorini volcanic
complex (Vallianatos et al. 2013), where the normalized cumulative magnitude
distribution of the volcano seismicity is well described by the model (Eq. 3.1.12)
for the value of the entropic index qE = 1.39 (Fig. 4).

The entropic index qE has been recently used by Papadakis et al. (2013) to
geodynamically characterize various seismic zones along the Hellenic Subduction
Zone (HSZ). Figure 5 shows the distribution of the relative cumulative number of

Fig. 3 The energy
distribution function (circles)
and the fitted curve (solid
line). The dashed line
represents the G-R relation for
b = 1.51 ± 0.03 (Michas et al.
2013)
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earthquakes as a function of magnitude M for the Hellenic Subduction Zone as a
unified system and the fitting according to the model of Eq. (3.1.13), while Fig. 6
shows the variation of the qE value along the HSZ, where the variation is related to
the energy release rate in each seismic zone.

3.1.2 Global Earthquake Size Distribution. The Effect
of Mega-Earthquakes

The global earthquake frequency-magnitude distribution is among the
long-standing statistical relationships of seismology. Recently, Vallianatos and

Fig. 4 Normalized cumulative magnitude distribution of the Santorini seismicity (circles) and the
fitting curve (solid line). The values for the best fit regression to the data are qE = 1.39 ± 0.035 and
a = 286.6 ± 78. The 95 % confidence intervals for qE and a are also plotted (dashed lines)
(Vallianatos et al. 2013)

Fig. 5 The black dashed line
indicates the non-extensive
fitting curve for the HSZ as a
unified system (Papadakis
et al. 2013)
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Sammonds (2013) used non-extensive statistical mechanics to characterize the
global earthquake frequency–magnitude distribution and to interpret observations
from the Sumatran and Honshu earthquakes. Examples of the cumulative distri-
bution function (CDF) from the CMT seismic moment Mo data are given in Fig. 7.

Fig. 6 The variation of the qE value along the seismic zones of the HSZ (Papadakis et al. 2013)

Fig. 7 Distribution of seismicity versus seismic moment for the centroid moment tensor catalogue
up to the end of 1990 (before Sumatra mega event, in black), the end of December 2004 (after
Sumatra, in red) and within a week after Honshu mega earthquake (till 17 March 2011, in green),
for shallow events (H < 75 km), with Mw > 5.5, since 1 January 1981. This is plotted as a
normalized cumulative distribution function (CDF) against seismic moment (Vallianatos and
Sammonds 2013)
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The aforementioned authors found that global seismicity is described by
non-extensive statistical mechanics and that the seismic moment distribution
reflects a sub-extensive system, where long-range interactions are important.

Using the cross-over formulation of non-extensive statistical physics (see
Sect. 2.2), Vallianatos and Sammonds (2013) conclude that the seismic moment
distribution of moderate events yields thermodynamic q-values of qE = 1.6 which
seem to be constant for the duration of the Sumatra and Honshu earthquake
preparation, while rM (which describes the seismic moment distribution of great
events) varies from 1 that corresponds to an exponential function (Eqs. 2.2.8–
2.2.12), to 1.5 and another power-law regime (Eqs. 2.2.2–2.2.7) as we approach the
mega events (Fig. 8).

3.1.3 Increments of Earthquake Energies

The probability distribution in the incremental earthquake energies is referred to the
probability that an earthquake of energy S(i) will be followed by one with energy S
(i + 1) with difference R, expressed as R = S(i + 1) − S(i) (i = 1, 2, …, N − 1 where
N the total number). Caruso et al. (2007) have calculated this probability for a
dissipative Olami–Feder–Christensen model (OFC—Olami et al. 1992) and showed
that in the critical regime (small-world lattice) the probability distribution P
(R) follows a q-Gaussian, while in the noncritical regime (regular lattice) the dis-
tribution P(R) is close to a Gaussian distribution. Then considering the quantity
S = exp(M) as a measure of the energy S of an earthquake of magnitude M, Caruso
et al. (2007) showed that the probability distribution P(R) for real earthquakes in
Northern California and in the entire world follows a q-Gaussian distribution as
well, providing further evidence for self-organized criticality, intermittency and
long-range interactions in seismicity.
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Fig. 8 Temporal evolution of non-extensive parameters q and r extracted from the analyses of
seismic moment distribution using the global CMT catalogue. We observe a stable organization in
moderate events in contrast to a significant change of r, which supports the concept of the global
organization of seismicity before the two recent Sumatra and Honshu mega events (Vallianatos
and Sammons 2013)
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In addition, Vallianatos et al. (2013) studied the probability distribution of
incremental energies in the volcano related seismicity during the 2011–2012 unrest
at the Santorini volcanic complex. The probability density function of R, normal-
ized to zero mean and unit variance and subjected to the normalization conditionR
pðRÞdR ¼ 1 exhibits fat tails and can be well described by a q-Gaussian distri-

bution (Eq. 2.1.14) for the value of q = 2.24 ± 0.09 (Fig. 9), indicating non-linear
dynamics and self-organized criticality in the observed volcano-related seismicity.
Here we provide further evidence by considering the global earthquakes with
magnitude M ≥ 7 that occurred during the period 1900–2012, as these are reported
in the latest version of the Centennial earthquake catalog (Engdahl and Villaseñor
2002) (catalog available at http://earthquake.usgs.gov/data/centennial/) and sup-
plemented by the ANSS earthquake catalog (http://www.ncedc.org/anss/) for the
period 2007–2012. The probability density of the incremental earthquake energies
exhibits fat tails and deviates from the normal Gaussian distribution (Fig. 10). A q-
Gaussian distribution with q = 1.85 ± 0.1 can well describe the observed distri-
bution, thus enhancing the probability of large differences in the energies of suc-
cessive earthquakes in global scale.

3.2 Spatiotemporal Description

Throughout the text we referred to the scale-invariant spatiotemporal properties of
seismicity. Considering these properties, Abe and Suzuki proposed that the
3-dimensional hypocentral distances and the time intervals between the successive

Fig. 9 Probability density function P(X) (solid circles) for the 2011–2012 earthquake activity in
Santorini volcanic complex on a semi-log plot, where S = exp(M), R = S(i + 1) − S(i),
X = (R − <R>)/σR and <R> the mean and σR the standard deviation. The dashed curve represents
the standard Gaussian shape. The data is well fitted by a q-Gaussian curve (solid line) for the value
of the entropic index qR = 2.24 ± 0.09 (95 % confidence intervals—dotted curves) (Vallianatos
et al. 2013)
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earthquakes follow a q-exponential distribution (see Sect. 2.1) with q < 1 and q > 1
respectively and verified their approach for the cumulative distribution of
inter-event distances and times of successive earthquakes in California and Japan
(Abe and Suzuki 2003, 2005). Since then, this approach has been successfully
applied in various studies, covering diverse scales and tectonic regimes (e.g.,
Darooneh and Dadashinia 2008; Vallianatos et al. 2012a, b; Vallianatos and
Sammonds 2013; Papadakis et al. 2013).

Such examples of the non-extensive statistical physics application to the spa-
tiotemporal distributions of earthquakes for regional tectonics and mega-structure
geodynamics are given in Figs. 11, 12, 13, 14, 15, 16, 17 and 18. In particular, in
Fig. 11 the cumulative inter-event time distribution P(>τ) for the 1995 Aigion
earthquake aftershock sequence is presented that follows a q-exponential distribu-
tion for qτ = 1.58 (Vallianatos et al. 2012b).

Papadakis et al. (2013) estimated the cumulative distribution functions of the
inter-event times and distances along the HSZ (Figs. 12 and 13). Figures 14 and 15
show the variation of the calculated qT and qD values along the seismic zones of the
HSZ. With the exception of seismic zone 4, which is located in the central part of
the HSZ and covers the southern area of Crete, the qT values appear close to each
other while the qD values seem to differ significantly. The latter result possibly
reflects the fact that qT is related with the time evolution of seismicity, which is a
long term process in the Hellenic arc, with the highest temporal clustering in the
area south of Crete. In addition the qD variations indicate a different degree of
spatial earthquake clustering along the seismic zones.

Fig. 10 Probability density function P(X) (solid circles) for the 1900–2012 global seismicity with
magnitude M ≥ 7 on a semi-log plot, where S = exp(M), R = S(i + 1) − S(i), X = (R − <R>)/σR
and <R> the mean and σR the standard deviation. The normalization condition

R
pðRÞdR ¼ 1

applies. The dashed curve represents the standard Gaussian shape and the solid line the q-Gaussian
distribution for the value of q = 1.85 ± 0.1
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Additionally, Vallianatos and Sammonds (2013), using global shallow seis-
micity with Mw > 5.5 extracted from CMT catalogue, analyzed the inter-event time
distribution before and after the Sumatran and Honshu mega earthquakes. Figure 16
shows the inter-event times cumulative probability distribution P(>τ) and demon-
strates that, in spite of the changes observed in non-extensive frequency-seismic

Fig. 11 Log-log plot of P(>τ). The solid line represents the qτ-exponential distribution for the
values of qτ = 1.58 ± 0.02 and τ0 = 0.025 ± 0.0003 days. Inset the qτ-logarithmic distribution lnq(P
(>τ)), exhibiting a correlation coefficient of r = −0.9885. The straight line corresponds to the q-
exponential distribution (Vallianatos et al. 2012b)

Fig. 12 The log-log plot of the inter-event times cumulative distribution for the HSZ as a unified
system. Inset the semi-q-log plot of the inter-event times cumulative distribution for the HSZ as a
unified system. The dashed line represents the q-logarithmic function (Papadakis et al. 2013)
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Fig. 13 The log-log plot of the three-dimensional distances cumulative distribution for the HSZ as
a unified system. Inset The semi-q-log plot of the inter-event distances cumulative distribution for
the HSZ as a unified system. The dashed line represents the q-logarithmic function (Papadakis
et al. 2013)

Fig. 14 The qT variation along the HZS (Papadakis et al. 2013)
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Fig. 15 The qD variation along the HSZ (Papadakis et al. 2013)
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Fig. 16 Log-log plot of the cumulative distribution of inter-event times for the centroid moment
tensor catalogue summed from 1.1.1981 to 31.12.2000, to 31.12.2005 and 27.03.2011 for shallow
events Mw > 5.5. There is no change observed due to the Sumatran and Honshu earthquakes. The
best fit regression is realized by qτ = 1.52 and το = 290 min. The associated value of the correlation
coefficient between the data and the model is 0.99354 (Vallianatos and Sammonds 2013)
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moment distribution, there is no change in global temporal distribution due to the
mega earthquakes. Moreover the inter-event distances cumulative probability dis-
tribution P(>D) (Fig. 17) does not present any change before and after
mega-earthquakes.

Along with the cumulative inter-event time distribution, the probability distri-
bution function of the normalized inter-event times of earthquakes in the West
Corinth rift has been studied by Michas et al. (2013). In this case, inter-event times τ
(in seconds) are scaled to the mean inter-event time �s ¼ tN � t1ð Þ= N � 1ð Þ as s0 ¼
s=�s: For various threshold magnitudes, the probability distribution function exhibits
two-power law regions for short and long inter-event times, indicating the presence
of scaling and clustering at both short and long time scales (Fig. 18). This behavior
can be well reproduced by a q-generalized gamma distribution (Queiros 2005) that
has the form:

pðs0Þ ¼ Cs0ðc�1Þ expqð�s0=hÞ; ð3:2:1Þ

where C, γ and θ are constants and eq(x) the q-exponential function (Eq. 2.1.7). In
the limit q → 1, Eq. (3.1) recovers the ordinary gamma distribution. This result
indicate that short and intermediate inter-event times, directly related to the pro-
duction of aftershock sequences, scale with exponent γ − 1 and long-inter-event
times scale with exponent 1/(1 − q).
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Fig. 17 Log-log plot of the cumulative distribution of inter-event distances for the centroid
moment tensor catalogue summed from 1.1.1981 to 31.12.2000, to 31.12.2005 and 27.03.2011 for
shallow events Mw > 5.5. There is no change observed due to the Sumatran and Honshu
earthquakes. The best fit regression is realized by qD = 0.29 and Dο = 104 km. The associated value
of the correlation coefficient between the data and the model is 0.96889 (Vallianatos and
Sammonds 2013)
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3.3 Fault Networks

Fault systems have been documented on nearly every geologic surface in the solar
system (Schultz et al. 2010) and represent a complex scale-invariant network of
fractures and faults that is related morphologically and mechanically with the
planetary lithosphere deformation and seismicity (Schultz 2003; Knapmeyers et al.
2006). In the last decades, innovative insights into the origin of fault population
dynamics have been presented from the point of view of non-equilibrium ther-
modynamics (Prigogine 1980), fractal geometry (Mandelbrot 1983; Scholz and
Mandelbrot 1989), thermodynamics of chaotic systems (Beck and Schlogl 1993)
and complexity (Tsallis 2001, 2009).

Vallianatos et al. (2011b) and Vallianatos (2013) used non-extensive statistical
physics to explore the distribution of the fault lengths. The aforementioned authors
tested the applicability of non-extensive statistical physics in two extreme cases:
(a) Crete, in the front of the Hellenic arc and (b) the fault distribution in an
extraterrestrial planet, the Mars.

Fault lengths distributions in Central Crete presented by Vallianatos et al.
(2011b) (Fig. 19) in the form of log-log plot of the cumulative distribution function
(CDF) Pcum(>L) of the fault lengths. An analysis of the faults of Central Crete as a
single set based on q-exponential distribution leads to q = 1.16.

We proceed now to explore using the principles of non-extensive statistical
mechanics the fault population statistics derived for an extraterrestrial data set

Fig. 18 Normalized probability density p (τ΄) for the scaled inter-event times τ΄ for various
threshold magnitudes. Solid line represents the q-generalized gamma distribution (Eq. 3.2.1) for
the values of C = 0.35, γ = 0.39, θ = 1.55 and q = 1.23 (Michas et al. 2013)
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selected in a well-studied planet as Mars is. The Valles Marineris Extensional
Province on Mars (Lucchitta et al. 1992; Mège and Masson 1996; Schultz 1995,
1997) includes perhaps the largest planetary rift-like structure in the solar system.

The cumulative distribution functions of faults (CDF) P(>L), are shown as
log-log plots in Fig. 20 for the cases of normal and thrust faults. The analysis of
fault lengths in Mars indicates that qe = 1.277 for the extensional (normal) faults,
while qc = 1.114 for the compressional (thrust) faults.

The q-values estimated supports the conclusion that the planetary fault system in
Mars is a sub-additive one in agreement with a recent result (Vallianatos and
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Fig. 19 Unormalized empirical CDF for all fault lengths in Central Crete graben. In the upper
right corner the semi-q-log plot of the cumulative distribution function CDF of fault lengths for all
the examined sets of Central Crete graben is presented (Vallianatos et al. 2011b)

Fig. 20 The normalized cumulative distribution function P(>L) for Mars a compressional and
b extensional faults. The black line is the q-exponential fitting for a qc = 1.114 for the trust
(compressional) faults and b qe = 1.277 for the normal (extensional) ones (Vallianatos 2013)
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Sammonds 2011) for the Valles Marineris extensional province, Mars and for the
regional fault structure in the front of the Hellenic arc (Vallianatos et al. 2011b),
with consistency with that observed in local and global seismicity (Vallianatos and
Sammonds. 2013; Vallianatos et al. 2013).

3.4 Plate Tectonics as a Case of Non-extensive
Thermodynamics

In 2003, Bird presented a new global set of present plate boundaries on the Earth (in
digital form) and proposed that the distribution of areas of the tectonic plates
follows a power law and that this distribution fitted well with the concepts of a few
major plates and a hierarchical self-similar organization of blocks at the boundary
scale, a fractal plate distribution and a self-organized system.

Vallianatos and Sammonds (2010) applied the concept of non-extensive statis-
tical mechanics to plate tectonics. The aforementioned authors calculated the
probability density function for the areas of the tectonic plates. Figure 21 shows the
complementary cumulative number F(>A) of plates as a function of area A in
steradians, i.e., the number of plates with an area equal to or larger than A. The data
are accounted for by the power law, Fð[AÞ / A�l with μ close to 1/3 except for
the three smallest ranks and the largest plates. The results show that three classes
(small, intermediate and large) of tectonic plates can be distinguished, which is
consistent with the observations of Bird (2003). Vallianatos and Sammonds used
the differential equation dpi=dAi ¼ �b1pi � ðbq � b1Þpqi (see Sect. 2.2 “Cases with
two slopes”) in order to further generalize the anomalous equilibrium distribution,
in such a way as to have a crossover from anomalous (q ≠ 1) to normal (q = 1)
statistical mechanics, while increasing the plate’s area. From a visual inspection of
Fig. 21, it might be argued that the deviation from the power law region occurs
earlier at the seven largest plates with area more than 1 steradian and belong to a
different population than the rest of the plates, indicating that a cross-over exist at
Ac2 ≈ 1 steradian. Furthermore at the five smallest plates another cross-over exists
at Ac1 ≈ 3 × 10−3steradians.

Taking into account that for the intermediate class of tectonic plates the
cumulative frequency distribution behaves as a power law with exponent 1/3, the
thermodynamic q parameter is calculated equal to q = 1.75, which supports the
conclusion that the plate tectonics system is a sub-extensive one.

3.5 Laboratory Seismology

Recently, the statistical properties of fracture have attracted a wide interest in the
statistical physics community (Herrmann and Roux 1990; Chakrabarti and
Benguigui 1997). In this context, fracture can be seen as the outcome of the
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irreversible dynamics of a long-range interacting, disordered system. Several
experimental observations have revealed that fracture is a complex phenomenon,
described by scale invariant laws (Krajcinovic and Van Mier 2000). Examples
notably include the acoustic emission (AE) measured prior to fracture and the
roughness of the fracture surface (Lei et al. 1992, 2000; and references therein).

Vallianatos et al. (2012a) investigated the statistical physics of fracture in a
heterogeneous brittle material (Etna basalt) under triaxial deformation, analyzing
the temporal and three dimensional location of moment release of acoustic emis-
sions from micro-fractures that occur before the final fracture.

Using the calculated AE moment, the cumulative distribution function (CDF) P
(>M) of the AE scalar moments is shown in Fig. 22a, b presents the log-log plot of
the cumulative distribution function P(>T) of the AE inter-event times while
Fig. 22c the log-log plot of the cumulative distribution function P(>D) of the AE
inter-event Euclidean distances.

The aforementioned authors showed that the scalar moment distribution and the
inter-event time distribution of AE, are expressed by the non-extensive statistical
mechanics of a sub-additive process with q-values qM = 1.82 and qτ = 1.34
respectively supporting the idea of the presence of long-range effects. The
inter-event distances described by q-statistics with qD = 0.65. The above suggests
that AEs in Etna’s basalt are described by the q-value triplet (qM, qτ, qD) = (1.82,
1.34, 0.65). Furthermore, it should be noticed that the sum of qτ and qD indices of
the distribution of the inter-event time and distance is qτ + qD ≈ 2, similar with that
observed in regional seismicity data both from Japan and California (Abe and
Suzuki 2003, 2005) and verified numerically using the two dimensional
Burridge-Knoppoff model (Hasumi 2007, 2009). These results indicate that AEs
exhibits a non-extensive spatiotemporal duality similar with that observed with
earth seismicity (Abe and Suzuki 2003, 2005; Vallianatos 2009; Vallianatos and
Sammonds 2011).

Fig. 21 Complementary cumulative distribution of the areas of tectonic plates compared to the fit
with a power law (central long-dashed line) with exponent µ = 1/3 (Vallianatos and Sammonds
2010)
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3.6 Can Non-extensive Statistical Physics Predict
Seismicity’s Evolution?

Recently, the ideas of non-extensive statistical physics have been used to uncover
hidden dynamic features of seismicity before strong events (Papadakis et al. 2014;
Vallianatos et al. 2014). These studies examine possible variations of the thermo-
statistical parameter qE before the occurrence of a mainshock. This parameter,
which is derived from the fragment asperity model (Sotolongo-Costa and Posadas,
2004), is related to the frequency-magnitude distribution and can be used as an
index of the stability of a seismic area. The observed variations are consistent with
the evolution of seismicity and seem a very useful tool for the distinction of
different dynamical regimes towards a strong earthquake. It should be noticed that
this approach has been applied to the strong event of L’Aquila, on April 6, 2009
(ML = 5.8) (Telesca 2010c). The aforementioned author calculated an increase of
the non-extensive parameter in a time interval starting some days before the
occurrence of the mainshock.

(a)

(b)

(c)

Fig. 22 a The cumulative
distribution function (CDF),
P(>M) of the AEs scalar
moment M, along with the q-
exponential fitting curve.
b The cumulative distribution
function P(>T) of the AEs
inter-event time T, along with
the q-exponential fitting
curve. c The cumulative
distribution function P(>D) of
the AEs inter-event Euclidean
distance D, along with the q-
exponential fitting curve
(Vallianatos and Triantis
2012a)
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Vallianatos et al. (2014) applied the concept of non-extensive statistical physics
along with the method of natural time analysis (Varotsos et al. 2011) to examine the
precursory seismicity of the Mw6.4, October 12, 2013 earthquake in the south-
western part of the Hellenic Arc (Fig. 23). Varotsos et al. (2001), proposed the
natural time analysis of a complex system, from which we deduce the maximum
information from a given time series and we identify the time as we approach
towards the occurrence of the mainshock (Varotsos et al. 2011).

Figure 24 presents the temporal evolution of the parameter qE over increasing
(cumulative) time windows. The initial time window has a 100-event width and
increases per 1 event over time. The obtained qE values are associated with the last
event included in the window.

The analysis of the frequency-magnitude distribution according to Eq. (3.1.13)
reveals that the non-extensive parameter qE varies during the last period of the
earthquake preparatory phase and exhibits a sharp increase a couple of days before
the occurrence of the mainshock, indicating an increase in the degree of
out-of-equilibrium state before the occurrence of the Mw6.4 earthquake.

Moreover, Papadakis et al. (2014) used the non-extensive formalism to decode
the evolution of seismicity towards the January 17, 1995 Kobe earthquake
(M = 7.2), in the southwestern part of Japan.

For the detection of possible variations of the non-extensive parameter qE, the
aforementioned authors calculated these variations in different time windows.
Figure 25 shows the variations of qE values over 200-event moving windows
(overlapping), having a sliding factor equal to 1. The qE parameter increases sig-
nificantly on April 9, 1994 and peaks (qE = 1.55) as we move towards the 1995

Fig. 23 The observed seismicity in the southwestern segment of the Hellenic Arc during the
period 1 July–30 October, 2013
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Fig. 24 The temporal evolution of the non-extensive parameter qE for a circle area with radius
R = 150 km around the epicenter of the main event. We note a sharp increase of qE to the value
qE ≈ 1.36 a couple of days before the occurrence of the strongest event, while a qE ≈ 1.6 is
estimated immediately with the Mw6.4 strong event

Fig. 25 Time variations of qE values (black continuous line) over 200-event moving windows
(overlapping), having a sliding factor equal to 1, and the associated standard deviation (black
dashed lines). On April 9, 1994 the non-extensive parameter increases significantly, indicating the
start of a transition phase towards the 1995 Kobe earthquake
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Kobe earthquake. After the strong event the non-extensive parameter starts
decreasing rapidly.

We detect a significant increase of the non-extensive parameter on April 9, 1994
which coincides with the occurrence of six seismic events equal to M = 4.1
(Fig. 26). The occurrence of these events breaks the magnitude pattern and along
with the observed qE variations indicates a transition phase towards the 1995 Kobe
earthquake.

We conclude that the non-extensive statistical physics approach elucidates the
physical evolution of a seismic area. Further development of the associated cal-
culated thermostatistical parameter qE as earthquake precursor improves our ability
towards earthquake prediction and becomes beneficial for society and for com-
munities experiencing earthquake hazard worldwide.

4 Quo Vademus?

Many aspects of seismology exhibit complexity. This is an area of research in both
the geophysical and statistical physics communities. Although much progress has
been made, many questions remain. Relevant areas include scaling laws, temporal
and spatial correlations, critical phenomena, and nucleation. Within this complex-
ity, scaling laws are now widely accepted. These include GR frequency–magnitude
scaling, Omori’s law for the decay of aftershock activity, and Bath’s law relating

Fig. 26 Time distribution of seismicity, showing the occurrence of six seismic events equal to
M = 4.1 between April 9, 1994 and April 13, 1994
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the magnitude of the largest aftershock to the magnitude of the main shock. It can
be shown that GR scaling is equivalent to fractal scaling between the number of
earthquakes and their rupture area. This scaling is scale invariant, it is robust, but do
we understand it? One approach is to directly associate this scaling with the
power-law slip-event scaling obtained in slider-block models. But in these models
an individual slider block can participate in events of all sizes. This does not seem
to be the case for earthquakes on faults; big faults appear to have large earthquakes
and small faults small earthquakes. Thus, the GR scaling may be the consequence
of a fractal distribution of fault sizes. This in turn can be attributed to scale-invariant
fragmentation of the earth’s brittle crust in active tectonic regions. The
spatio-temporal distribution of seismicity also appears to be universally applicable,
but why? A number of explanations have been given on an empirical basis. But the
fundamental physics of this spatio-temporal pattern remains controversial.

Models relevant to earthquakes and complexity are at an early stage of devel-
opment. Slider-block models have certainly played a role but are clearly only
weakly related to distributed seismicity. Laboratory seismology also plays a role in
understanding the complex behavior of brittle materials. Realistic simulations of
distributed seismicity are just beginning to be developed. A major objective of these
models is to provide estimates of the seismic hazard.

The study of the non-extensive statistical physics of earthquakes remains
wide-open with many significant discoveries to be made. The philosophy is based
on the holistic approach to understand the large scale patterns of seismicity. The
link between this conceptual approach, based on the successes of statistical physics,
and seismology thus remains a highly important domain of research. In particular,
statistical seismology needs to evolve into a genuine physically-based statistical
physics of earthquakes. In addition, more detailed and rigorous empirical studies of
the frequency-size statistics of earthquake seismic moments and how they relate to
seismo-tectonic conditions are needed in order to help settle the controversy over
the power-law versus the characteristic event regime, and the role of
regime-switching and universality. The important debate regarding statistical
physics approaches to seismicity would benefit significantly from two points.
Firstly, earthquake catalogs contain data uncertainties, biases and subtle incom-
pleteness issues. Investigating their influence on the results of data analyses inspired
by statistical physics, increases the relevance of the results. Secondly, the authors
should make links with the literature on statistical seismology which deals with
similar questions.

The results of the analysis in the cases described previously indicate that the
ideas of non-extensive statistical physics can be used to express the non-linear
dynamics that control the evolution of the earthquake activity at different scales.
The physical models that have been derived using generalized statistical physics
(NESP) can successfully describe the statistical properties of the earthquake
activity, regarding the magnitude and spatio-temporal scales. These properties, as
extracted from first principles, are important for the evolution of the earthquake
activity and should be considered in any probabilistic seismic hazard assessment.
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Since NESP approach can be evaluated in laboratory scale as well, a future
challenging question is to understand how we can scale statistical physics laws in
forecasting earthquakes or volcanic eruptions. The laboratory case is important,
because it is likely to represent an ideal upper limit for the predictability of
time-dependent failure in Earth materials and because many forecasting method-
ologies intuitively assume a simple scaling from laboratory to field conditions. The
global effort to assess the predictability of earthquakes in a rigorous, prospective
way has brought the lack of such rigorous evaluations into clearer focus. All
forecasting models are subject to the effects of material heterogeneity, measuring
error and incomplete data sampling. The key scientific challenge is to understand in
a unified way, using NESP principles, the physical mechanisms that drive the
evolution of fractures ensembles in laboratory and global scale and how we can use
measures of evolution that will forecast the extreme fracture event rigorously and
with consistency.
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